Mass production of nanowire powders using direct reaction of the component elements:
In this project, we have developed a simple, but scalable, process for the mass production of compound semiconductor nanowire powders. We employ direct reaction of the component elements for the mass production of nanowire powders. For instance, we employed the direct reaction of zinc foils with phosphorus for the formation of Zn3P2 nanowires on top of the foil surfaces. Here, the foils serve as both the source and the substrates for nanowire formation. In order to enhance the surface area of foil available for the formation of nanowires, we have coiled the zinc foils as illustrated in the picture. Following the synthesis, the foil was uncoiled and brushed off to collect 100% phase-pure Zn3P2 nanowires. We have also extended this process for the synthesis of Zn4Sb3 nanowires. The synthesis procedure could also be extended for the production of in-situ functionalized compound semiconductor nanowire powders. Accomplishing this simply requires exposing the nanowires to a vapor of the requisite organic functional molecules immediately after the conclusion of the nanowire synthesis, and before they are removed from the vacuum procedure. Pictorial illustrations of the hot-walled chemical vapor deposition setup useful for the mass production of nanowires, along with those representing a small section of the results obtained, are provided below.